Is aproximate computing suitable for selective hardening of arithmetic circuits? - LIRMM - Laboratoire d’Informatique, de Robotique et de Microélectronique de Montpellier
Conference Papers Year : 2018

Is aproximate computing suitable for selective hardening of arithmetic circuits?

Abstract

Selecting the ideal trade-off between reliability and cost associated with a fault tolerant architecture generally involves an extensive design space exploration. In this paper, we address the problem of selective hardening of arithmetic circuits by considering a duplication/comparison scheme as error detection architecture. Different duplication scenarios have been investigated: i) a full duplication, ii) a reduced duplication based on a structural susceptibility analysis, iii) a reduced duplication based on the logical weight of the arithmetic circuit outputs and iv) a reduced duplication based on an approximated structure from a public benchmark suite. Experimental results performed on adder and multiplier case study circuits demonstrate the interest of using approximate circuits to improve the mean time to failure while keeping a low area and power overhead and reduced error probability and error magnitude.
Fichier principal
Vignette du fichier
08368559.pdf (999.55 Ko) Télécharger le fichier
Origin Files produced by the author(s)

Dates and versions

lirmm-03130537 , version 1 (05-02-2021)

Identifiers

Cite

Bastien Deveautour, Arnaud Virazel, Patrick Girard, Serge Pravossoudovitch, Valentin Gherman. Is aproximate computing suitable for selective hardening of arithmetic circuits?. DTIS 2018 - 13th International Conference on Design and Technology of Integrated Systems in Nanoscale Era, Apr 2018, Taormina, Italy. pp.1-6, ⟨10.1109/DTIS.2018.8368559⟩. ⟨lirmm-03130537⟩
65 View
106 Download

Altmetric

Share

More