A Generative AI for Heterogeneous Network-on-Chip Design Space Pruning - LIRMM - Laboratoire d’Informatique, de Robotique et de Microélectronique de Montpellier
Conference Papers Year : 2022

A Generative AI for Heterogeneous Network-on-Chip Design Space Pruning

Maxime Mirka
Maxime France-Pillois
Gilles Sassatelli
Abdoulaye Gamatié

Abstract

Often suffering from under-optimization, Networkson-Chip (NoCs) heavily impact the efficiency of domain-specific Systems-on-Chip. To cope with this issue, heterogeneous NoCs are promising alternatives. Nevertheless, the design of optimized NoCs satisfying multiple performance objectives is extremely challenging and requires significant expertise. Prior works failed to combine many objectives or required an extended design space exploration time. In this paper, we propose an approach based on generative artificial intelligence to help pruning complex design spaces for heterogeneous NoCs, according to configurable performance objectives. This is made possible by the ability of Generative Adversarial Networks to learn and generate relevant design candidates for the target NoCs. The speed and flexibility of our solution enable a fast generation of optimized NoCs that fit users' expectations. Through some experiments, we show how to obtain competitive NoC designs reducing the power consumption with no communication performance or area penalty compared to a given conventional NoC design.
Fichier principal
Vignette du fichier
DATE_329_Paper_camera-ready.pdf (915 Ko) Télécharger le fichier
Origin Files produced by the author(s)

Dates and versions

lirmm-03475912 , version 1 (11-12-2021)

Identifiers

Cite

Maxime Mirka, Maxime France-Pillois, Gilles Sassatelli, Abdoulaye Gamatié. A Generative AI for Heterogeneous Network-on-Chip Design Space Pruning. DATE 2022 - 25th Design, Automation and Test in Europe Conference and Exhibition, Mar 2022, Antwerp, Belgium. pp.1135-1138, ⟨10.23919/DATE54114.2022.9774721⟩. ⟨lirmm-03475912⟩
282 View
426 Download

Altmetric

Share

More