Self Calibration of a Sonar–Vision System for Underwater Vehicles: A New Method and a Dataset - LIRMM - Laboratoire d’Informatique, de Robotique et de Microélectronique de Montpellier
Article Dans Une Revue Sensors Année : 2023

Self Calibration of a Sonar–Vision System for Underwater Vehicles: A New Method and a Dataset

Nicolas Pecheux
  • Fonction : Auteur
  • PersonId : 1224913
Vincent Creuze
Frédéric Comby

Résumé

Monocular cameras and multibeam imaging sonars are common sensors of Unmanned Underwater Vehicles (UUV). In this paper, we propose a new method for calibrating a hybrid sonar–vision system. This method is based on motion comparisons between both images and allows us to compute the transformation matrix between the camera and the sonar and to estimate the camera’s focal length. The main advantage of our method lies in performing the calibration without any specific calibration pattern, while most other existing methods use physical targets. In this paper, we also propose a new sonar–vision dataset and use it to prove the validity of our calibration method.
Fichier principal
Vignette du fichier
2023_02_Sensor_calibration_sonar_vision_AUTHOR_VERSION.pdf (7.49 Mo) Télécharger le fichier
Origine Fichiers produits par l'(les) auteur(s)

Dates et versions

lirmm-03972234 , version 1 (03-02-2023)

Licence

Identifiants

Citer

Nicolas Pecheux, Vincent Creuze, Frédéric Comby, Olivier Tempier. Self Calibration of a Sonar–Vision System for Underwater Vehicles: A New Method and a Dataset. Sensors, 2023, 23 (3), pp.1700. ⟨10.3390/s23031700⟩. ⟨lirmm-03972234⟩
39 Consultations
40 Téléchargements

Altmetric

Partager

More