2-distance 4-coloring of planar subcubic graphs with girth at least 21 - LIRMM - Laboratoire d’Informatique, de Robotique et de Microélectronique de Montpellier Access content directly
Preprints, Working Papers, ... Year : 2023

2-distance 4-coloring of planar subcubic graphs with girth at least 21

Xuan Hoang La
Mickaël Montassier

Abstract

A $2$-distance $k$-coloring of a graph is a proper vertex $k$-coloring where vertices at distance at most 2 cannot share the same color. We prove the existence of a $2$-distance $4$-coloring for planar subcubic graphs with girth at least 21. We also show a construction of a planar subcubic graph of girth 11 that is not $2$-distance $4$-colorable.
Fichier principal
Vignette du fichier
2106.03587.pdf (734.23 Ko) Télécharger le fichier
Origin Files produced by the author(s)

Dates and versions

lirmm-04041953 , version 1 (17-10-2023)

Identifiers

Cite

Xuan Hoang La, Mickaël Montassier. 2-distance 4-coloring of planar subcubic graphs with girth at least 21. 2023. ⟨lirmm-04041953⟩
21 View
18 Download

Altmetric

Share

Gmail Mastodon Facebook X LinkedIn More