Nonlinear identification of skeletal muscle dynamics with sigma-point kalman filter for model-based FES

Mitsuhiro Hayashibe 1 Philippe Poignet 1 David Guiraud 1
1 DEMAR - Artificial movement and gait restoration
LIRMM - Laboratoire d'Informatique de Robotique et de Microélectronique de Montpellier, CRISAM - Inria Sophia Antipolis - Méditerranée
Abstract : A model-based FES would be very helpful for the adaptive movement synthesis of spinal-cord-injured patients. For the fulfillment, we need a precise skeletal muscle model to predict the force of each muscle. Thus, we have to estimate many unknown parameters in the nonlinear muscle system. The identification process is essential for the realistic force prediction. We previously proposed a mathematical muscle model of skeletal muscle which describes the complex physiological system of skeletal muscle based on the macroscopic Hill-Maxwell and microscopic Huxley concepts. It has an original skeletal muscle model to enable consideration for the muscular masses and the viscous frictions caused by the muscle-tendon complex. In this paper, we present an experimental identification method of biomechanical parameters using sigma-point Kalman filter applied to the nonlinear skeletal muscle model. Result of the identification shows its effective performance. The evaluation is provided by comparing the estimated isometric force with experimental data with the stimulation of the rabbit medial gastrocnemius muscle. This approach has the advantage of fast and robust computation, that can be implemented for online application of FES control.
Keywords : FES Identification
Type de document :
Communication dans un congrès
ICRA: International Conference on Robotics and Automation, May 2008, Pasadena, CA, United States. IEEE International Conference on Robotics and Automation, pp.2049-2054, 2008, 〈http://ewh.ieee.org/soc/ras/conf/FullySponsored/ICRA/2008/index.html〉. 〈10.1109/ROBOT.2008.4543508〉
Liste complète des métadonnées

https://hal-lirmm.ccsd.cnrs.fr/lirmm-00196062
Contributeur : Philippe Poignet <>
Soumis le : mercredi 12 décembre 2007 - 10:24:35
Dernière modification le : jeudi 11 janvier 2018 - 16:20:50

Identifiants

Collections

Citation

Mitsuhiro Hayashibe, Philippe Poignet, David Guiraud. Nonlinear identification of skeletal muscle dynamics with sigma-point kalman filter for model-based FES. ICRA: International Conference on Robotics and Automation, May 2008, Pasadena, CA, United States. IEEE International Conference on Robotics and Automation, pp.2049-2054, 2008, 〈http://ewh.ieee.org/soc/ras/conf/FullySponsored/ICRA/2008/index.html〉. 〈10.1109/ROBOT.2008.4543508〉. 〈lirmm-00196062〉

Partager

Métriques

Consultations de la notice

142