Towards an Interval-Valued Estimation of the Density

Bilal Nehme 1 Olivier Strauss 2
2 ICAR - Image & Interaction
LIRMM - Laboratoire d'Informatique de Robotique et de Microélectronique de Montpellier
Abstract : This paper presents a theoretical and practical novel approach for computing the probability density function underlying a set of observations. The estimator we propose is an extension of the conventional Parzen Rosenblatt method that leads to a very specific interval-valued estimation of the density. Within this approach, we make use of the convenient representation of a set of usual (summative) kernels by a maxitive kernel (i.e. a possibility distribution) to derive an exact computation with a very low complexity of an interval-valued estimation. The considered set of kernels is particularly convenient since it contains kernels having comparable shapes and bandwidth. We prove that the obtained imprecise probability density function contains a set of precise density functions estimated using the standard method with kernels belonging to the considered set.
Type de document :
Communication dans un congrès
WCCI: World Congress on Computational Intelligence, 2010, Barcelona, Spain. pp.3114-3119, 2010
Liste complète des métadonnées

Littérature citée [13 références]  Voir  Masquer  Télécharger

https://hal-lirmm.ccsd.cnrs.fr/lirmm-00505969
Contributeur : Martine Peridier <>
Soumis le : mardi 27 juillet 2010 - 11:26:34
Dernière modification le : jeudi 11 janvier 2018 - 06:26:18
Document(s) archivé(s) le : jeudi 1 décembre 2016 - 18:55:59

Fichier

FuzzIEEE2010.pdf
Fichiers produits par l'(les) auteur(s)

Identifiants

  • HAL Id : lirmm-00505969, version 1

Citation

Bilal Nehme, Olivier Strauss. Towards an Interval-Valued Estimation of the Density. WCCI: World Congress on Computational Intelligence, 2010, Barcelona, Spain. pp.3114-3119, 2010. 〈lirmm-00505969〉

Partager

Métriques

Consultations de la notice

131

Téléchargements de fichiers

99