Towards an Interval-Valued Estimation of the Density - LIRMM - Laboratoire d’Informatique, de Robotique et de Microélectronique de Montpellier
Communication Dans Un Congrès Année : 2010

Towards an Interval-Valued Estimation of the Density

Résumé

This paper presents a theoretical and practical novel approach for computing the probability density function underlying a set of observations. The estimator we propose is an extension of the conventional Parzen Rosenblatt method that leads to a very specific interval-valued estimation of the density. Within this approach, we make use of the convenient representation of a set of usual (summative) kernels by a maxitive kernel (i.e. a possibility distribution) to derive an exact computation with a very low complexity of an interval-valued estimation. The considered set of kernels is particularly convenient since it contains kernels having comparable shapes and bandwidth. We prove that the obtained imprecise probability density function contains a set of precise density functions estimated using the standard method with kernels belonging to the considered set.
Fichier principal
Vignette du fichier
FuzzIEEE2010.pdf (636.02 Ko) Télécharger le fichier
Origine Fichiers produits par l'(les) auteur(s)
Loading...

Dates et versions

lirmm-00505969 , version 1 (27-07-2010)

Identifiants

  • HAL Id : lirmm-00505969 , version 1

Citer

Bilal Nehme, Olivier Strauss. Towards an Interval-Valued Estimation of the Density. WCCI: World Congress on Computational Intelligence, 2010, Barcelona, Spain. pp.3114-3119. ⟨lirmm-00505969⟩
127 Consultations
313 Téléchargements

Partager

More