Two 0.8 V, Highly Reliable RHBD 10T and 12T SRAM Cells for Aerospace Applications - LIRMM - Laboratoire d’Informatique, de Robotique et de Microélectronique de Montpellier Access content directly
Conference Papers Year : 2022

Two 0.8 V, Highly Reliable RHBD 10T and 12T SRAM Cells for Aerospace Applications

Aibin Yan
Zhihui He
  • Function : Author
  • PersonId : 1161845
Jing Xiang
  • Function : Author
  • PersonId : 1161846
Jie Cui
Yong Zhou
  • Function : Author
  • PersonId : 1161772
Zhengfeng Huang
Xiaoqing Wen

Abstract

Aggressive scaling of CMOS technologies requires to pay attention to the reliability issues of circuits. This paper presents two highly reliable RHBD 10T and 12T SRAM cells, which can protect against single-node upsets (SNUs) and double-node upsets (DNUs). The 10T cell mainly consists of two cross-coupled input-split inverters and the cell can robustly keep stored values through a feedback mechanism among its internal nodes. It also has a low cost in terms of area and power consumption, since it uses only a few transistors. Based on the 10T cell, a 12T cell is proposed that uses four parallel access transistors. The 12T cell has a reduced read/write access time with the same soft error tolerance when compared to the 10T cell. Simulation results demonstrate that the proposed cells can recover from SNUs and a part of DNUs. Moreover, compared with the state-of-the-art hardened SRAM cells, the proposed 10T cell can save 28.59% write access time, 55.83% read access time, and 4.46% power dissipation at the cost of 4.04% silicon area on average.
Fichier principal
Vignette du fichier
SY136.pdf (562.58 Ko) Télécharger le fichier
Origin : Files produced by the author(s)

Dates and versions

lirmm-03770855 , version 1 (06-09-2022)

Identifiers

Cite

Aibin Yan, Zhihui He, Jing Xiang, Jie Cui, Yong Zhou, et al.. Two 0.8 V, Highly Reliable RHBD 10T and 12T SRAM Cells for Aerospace Applications. GLVLSI 2022 - 32nd ACM Great Lakes Symposium on VLSI, Jun 2022, Irvine, CA, United States. pp.261-266, ⟨10.1145/3526241.3530312⟩. ⟨lirmm-03770855⟩
41 View
28 Download

Altmetric

Share

Gmail Facebook X LinkedIn More